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Overview

Seeking the simplesimple codes of complex images

Representation: learning from our own visionvision
Image zoomingzooming, and zooming neurons

MultiresolutionMultiresolution framework of Mallat and Meyer

Two key equations for Shape Function & WaveletShape Function & Wavelet
The fundamental theorem of MultiresolutionMultiresolution
2-channel orthogonal & biorthogonal filter banksfilter banks
Applications
(Chris and Michelle’s talks are next)
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Behind complexity is simplicity

Examples:
• The universal path to chaos is period doubling. 
• (Biology) ACTG encode the complexity of life.
• (Computer) “0” and “1” (or spin up and down for Quantum 

Computers)  are the digital “seeds.”
• (Physics) The complexity of the material world is based on 

the limited number of basic particles. 
• (Fractals) Simple algebraic rules hidden in complex shapes.
Conclusion:

Hidden in a complex phenomenon, is its simple 
evolutionary codes or building blocks (or the atoms).
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The complexity of image signals

Images:

• Large dynamic range of scales.
• Often no good regularity as functions.
• Rich variations in intensity and color.
• Complex shapes and boundaries of “objects.”
• Noisy or blurred (astronomical or medical image).
• “The lost dimension” --- range is lost but depth is still 

important for understanding meaningfully 2-D images. 
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( Turing )( Turing )

• Fractals: by Iterated Function Systems.

• Pattern formation: via Differential Equations.

Searching for the hidden code of images (I)

( ( Mandelbrot Mandelbrot ))
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Searching for the hidden code of images (II)

Statistical modeling (Statistical modeling (Geman’sGeman’s, , MumfordMumford, Zhu, , Zhu, YuilleYuille…)…):

– Image prior models (edge, regularity,...).
– Image data models (noise, blurring,...).
– Image disocclusion models.

• Parametric methods & lattice models.

• Non-parametric methods & learning via the 
maximum entropy principle.
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A representation, not an interpretation...

• Benoit Mandelbrot (interview on France-Culture):        
“The world around us is very complicated. The tools at 
our disposal to describe it are very weak.”

• Yves Meyer (1993):

“Wavelets, whether they are …, will not help us to 
explain scientific facts, but they serve to describe the 
reality around us, whether or not it is scientific.”

• Thus, to represent a signal, is to find a good way to 
describe it, not to explain the underlying physical 
process that generates it.
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General images

• Mostly no global multi-scale self-similarity.

• Contain both man-made and natural “objects”

• Mostly no simple and universal underlying 
physical or biological processes that generate 
the patterns in a general image.  
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Fourier was born too early…

Claim: Harmonic waves are bad vision neurons…
Proof.

– A typical Fourier neuron is

– To “see”  a simple bright spot in the visual field,

all such neurons have to respond to it (!) since

).exp(iax=φ

)(xδ

.1, ≡φδ
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Efficiency of  representation

• David Field (Cornell U, Vision psychologist):

“To discriminate between objects, an effective 
transform (representation) encodes each image 
using the smallest possible number of neurons, 
chosen from a large pool.”
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Asking our own “headtop”…

• Psychologists show that visual  neurons are spatially
organized, and each behaves like a small sensor 
(receptor) that can respond strongly to spatial 
changes such as edge contours of objects (Fields, 1990).
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The Marr’s edge neuron model

• Detection of edge contours is a critical ability of 
human vision (Marr, 1982).

• Marr and Hildreth (1980) proposed a model for 
human detection of edges at all scales. This is Marr’s 
Theory of Zero-Crossings:
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Haar’s average-difference coding

• Marr’s edge detector is  to use second derivative to locate
the maxima of the first derivative (which the edge contours 
pass through).

• Haar Basis (1909)  encodes (modern language :-) the 
edges into image representation via the first derivative 
operator (i.e. moving difference):
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A good representation should respect edges 

• Edge is so important a feature in image and vision 
analysis.

• A good image representation (or basis) should be 
capable of providing the edge information easily.

• Edge is a local feature. Local operators like 
differentiation must be incorporated into the 
representation, as in the coding by the Haar basis.

• Wavelets improve Haar, while respecting the above 
edge representation principle.   
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What to expect from  a good representation? 

• Mathematically rigorous (i.e. a clean and stable 
analysis and synthesis program exists.  FT & IFT…).

• Having an independent digital formulation,  and 
computationally fast (FFT, FWT… ).

• Capturing the characteristics of the input signals, 
and thus many existing processing operators (e.g. 
image indexing, image searching …) are directly
permitted on such representation.
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Understanding images mathematically

• Let      denote the collection of “all” images. What is the 
mathematical structure of      ? Suppose that           is      
captured by a camera. Then     should be invariant under
– Euclidean motion of the camera:  

– Flashing:

or, more generally, a morphological transform ---

– Zooming:

∑
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Zooming in 2-D 
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What is zooming?

• Zooming (aiming) center:  a.

• Zooming scale:  h.

• Zoom into the h-neighborhood at a in a given image I:

• Zooming is one of the most fundamental and characteristic 
operators for image analysis and visual communication.  It 
reflects the multi-scale nature of images and vision.  
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The zooming neuron representation

• The zooming “neuron”:

• aiming (a) and zooming-in-or-out (h):

• Generating response (or neuron firing):

• The zooming space: 

).( xψ

).()( 1
, h

ax
hha x −= ψψ

.)()(, ,,, dxxxIII hahaha ψψ ∫==

.),( +×∈ RRha



School of Math, UMN, jhshen@math 20

A “good” neuron must be differentiating

• A good neuron should fire strongly to abrupt changes, 
and weakly to smooth domains (for purposes like 
efficient memory, object recognition, and so on).

• That means, for an uninteresting image I=c, the 
responses         are all zeros: 

This is the “differentiating” property of the neuron, 
just like “d/dx”: 
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The continuous wavelet representation

DefinitionDefinition:  
A differentiating zooming neuron              is said to be a 
(continuous) wavelet. Representing a given image I(x) 
by all the neuron responses                          is  the 
corresponding wavelet representation.

Questions:Questions:
– Does there exist a “best” wavelet              ?
– Does a wavelet representation allow perfect reconstruction?
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Synthesizing a  wavelet representation

•• Goal:Goal: to recover perfectly an image signal  I from its 
wavelet representation

• (Continuous) Wavelet synthesis:

which is in the form of IFT.  Thus                              
can be perfectly recovered via the a-FT of 

Then      can be perfectly recovered from J via
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The admissibility condition & differentiation 

• The admissibility condition of a continuous wavelet:

• A differentiating zooming neuron satisfies the AC since:

• Examples:
– The Marr wavelet (Mexican-hat): second derivative of Gaussian.

– The Shannon wavelet: 
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The discrete set of zooming neurons

• Make a log-linear discretization to the scale parameter h:

• Make a scale-adaptive discretization of the zooming 
centers:

• The discrete set of zooming neurons:
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The discrete wavelet representation

• The wavelet coefficients:

•• Questions:Questions:
– Does the set of all wavelet coefficients still encode the 

complete information of each input image I ? Or equivalently,

– Is the set of wavelets a basis?
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Example 1: Haar wavelet

• The Haar “aperture” function is 

• Haar’s theorem (1905):
All Haar wavelets , together with the constant function 1,    
consist into an orthonormal basis for the Hilbert space of all
square integrable functions on [0, 1]. 
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Haar wavelets (cont’d)

• Haar’s mother wavelet: 

• Why orthonormal basis?
– Orthonormality is easy to see.
– Completeness is due to the fact that:

All All dyadicallydyadically piecewise constant functions are dense in piecewise constant functions are dense in LL22(0,1).(0,1).

).(1)(1)( 12/12/10
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Haar wavelets (cont’d)

• Three Haar wavelets and the mean (constant) encode all 
the information of the piecewise constant approximation 
(or, the analog-to-digital transition).

I(x)

1 constant + 3 wavelets are enough.
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Example 2: The Shannon wavelets

• The Shannon’s “aperture” function is:

•• TheoremTheorem:

is an orthonormal basis of  L2(R).},:)({
Shannon

Zkjxj,k ∈ψ
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Shannon wavelets (cont’d)
• How to visualize the orthonormal basis ?

AnswerAnswer: go to the Fourier domain !

• According to Shannon:
– All signals bandlimited to (−π, π) can be represented by sinc(x-n)…
– those bandlimited to (−2π, π ) U (π, 2π),   by  
– those bandlimited to (−4π, 2π ) U (2π, 4π), by
– ...

).( sinc )2( sinc 2)(
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Shannon wavelets (cont’d)
• According to Shannon:

– All signals bandlimited to (- ,   ) can be represented by sinc(x-n)…
– those bandlimited to (-2   , - ) U (   , 2   ),   by  
– those bandlimited to (-4   ,-2   )U(2   ,  4   ), by
– ...

. . . . . .
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Partition of the time-frequency plane

• Heisenberg’s uncertainty principle requires that each TF 
atom must have: 

• Thus, for an optimal localization, the “life time” of an 
atom must influence its scale or frequency content.

frequency

time

sinc(x-n)

 sinc(2x-m)

sinc(4x-k)
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Multiresolution analysis

Mallat and Meyer (1986):

An (orthogonal) multiresolution of  L2(R) is a chain of 
closed subspaces indexed by all integers:

subject to the following three conditions:
– (completeness)

– (scale similarity)

– (translation seed) V0 has an orthonormal basis consisting of all 
integral translates of a single function 
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Equations for designing MRA

• The refinement (dilation) equation for the “seed” function: 

This seed function is called: scaling function, shape fcn…

• Where is the wavelet?
Let       denote the orthogonal complement of      in          
Then      is also orthogonally spanned by the integer 
translates of a single translation seed      the wavelet!

s.' ofset  suitable afor   ),2(2)( nn n hnxhx −= ∑ φφ

0W .1V0V
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s.' ofset  suitable afor   ),2(2)( nn n gnxgx −= ∑ φψ



35

Wavelets representation

Theorem:Theorem:

is an orthonormal basis for

Wavelets representation of a signal:Wavelets representation of a signal:
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An example of wavelet decomposition

One level wavelet decomposition of a 1-D signal
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2-channel filter bank: Analysis bank

G’

H’ 2

2

x
s

d

lowpass channel

highpass channel

• H’ is the lowpass filter  and G’ is the highpass filter.
• 2 is the downsampling operator: (1 3 4 6 5)      (1 4 5).
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2-channel filter bank: Synthesis bank

• H is the lowpass filter  and G is the highpass filter.
• 2 is the upsampling operator: (1 4 5)        (1 0 4 0 5).                  

G

H2

2

s

d

lowpass channel

highpass channel

y
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A biorthogonal  biorthogonal  filter bank

G’

H’ 2

2
x

s

d

G

H2

2

s

d
y

Biorthogonal (or perfect) filter bank: if  y=x for all inputs x .
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An  orthogonalorthogonal filter bank

G’

H’ 2

2
x

s

d

Orthogonal filter bank:  if it is biorthogonal, and both  
analysis filters H’ and G’ are the time reversals of the 
synthesis filters H & G:  H=(1, 2, 3)       H’=(3, 2, 1). 
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The fundamental theorem of MRA

• An orthogonalorthogonal Mallat-Meyer MRA corresponds to an 
orthogonalorthogonal filter bank with the synthesis filters:

where, the h’s and g’s are the 2-scale connection 
coefficients in the dialation and wavelet equations:

And, the multiresolution wavelet decomposition of   f  
corresponds to the iteration of the analysis bank with the 
φ-coefficients of   f  as the input digital data.
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The fundamental theorem (cont’d)
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Some major applications

• FBI fingerprints.
• JPEG2000.
• Image indexing and image search engines (for databank).
• Image modeling (such as MRF on the wavelets domain).
• Image denoising and restorations.
• Texture analysis.
• Direct processing tools on the wavelets domain.
• Algorithm speeding up based on multi-resolution rep.. 
• Time series analysis.
• A lot of others ...
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New Directions of Wavelets

• Random Wavelets Expansion (RWE) by Mumford-
Gidas [2001], to model the scale-invariance of general 
images.

• Geometric Wavelets:

– D. Donoho’s school: ridgelets, wedgelets, curvelets.

– S. Mallat [2001]:  beamlets.

– T. Chan & H.-M. Zhou [2000], A. Cohen [2002]: integrate 
computational PDE techniques such as the ENO scheme into 
wavelet transforms, to better capture shocks (discontinuities). 



That is all, folks…
Thank you for your patience!

Jackie


